Ergodicity in affine skew-product toral extensions
نویسندگان
چکیده
منابع مشابه
Ore extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملore extensions of skew $pi$-armendariz rings
for a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-armendariz ring, that is a generalization of both $pi$-armendariz rings, and $(alpha,delta)$-compatible skew armendariz rings. we first observe the basic properties of skew $pi$-armendariz rings, and extend the class of skew $pi$-armendariz rings through various ring extensions. we nex...
متن کاملBAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
متن کاملPolynomial Extensions of Skew Fields
An extension L/K of skew fields is called a leftpolynomialextension with polynomial generator 0 if it has a left basis of the form 1, i3, ti’, , Bnm’ for some n. This notion of left polynomial extension is a generalisation of the notion of pseudo-linear extension, known from literature. In this paper we show that any polynomial which is the minimal polynomial over K of some element in an extens...
متن کاملErgodicity of Z Extensions of Irrational Rotations
Let T = [0, 1) be the additive group of real numbers modulo 1, α ∈ T be an irrational number and t ∈ T. We consider skew product extensions of irrational rotations by Z 2 determined by T : T × Z 2 → T × Z 2 T (x, s 1 , s 2) = " x + α, s 1 + 2χ [0, 1 2) (x) − 1, s 2 + 2χ [0, 1 2) (x + t) − 1 «. We study ergodic components of such extensions and use the results to display irregularities in the un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1986
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1986.123.115